電力需要(インフラ)に関するニュース一覧

MIT、AI電力需要増に対応する新組織設立

AIが招く電力危機

2030年に世界需要が倍増
米国では電力の9%を消費予測
主因はAI利用の爆発的拡大

MITの産学連携フォーラム

研究者と産業界の専門家を結集
持続可能なAI成長の解決策を模索
エネルギー業界全体が参加

多角的な研究アプローチ

低/ゼロカーボン電力の供給
送電網の拡張と運用管理
AI活用による配電・立地の最適化

マサチューセッツ工科大学(MIT)のエネルギーイニシアティブ(MITEI)が9月、AIの急拡大で急増するデータセンター電力需要に対応するため、産学連携の「データセンター・パワー・フォーラム」を設立しました。このフォーラムは、研究者と産業界の専門家を集め、持続可能なデータ駆動型の未来に向けた革新的な電力ソリューションを探求することを目的としています。

AIの利用拡大は、電力インフラに前例のない負荷をかけています。調査機関によれば、世界のデータセンター電力需要は2030年までに倍以上に増加する見通しです。米国だけでも、全電力消費に占めるデータセンターの割合は2023年の4%から、2030年には9%に達すると予測されており、エネルギー業界にとって喫緊の課題となっています。

この課題に対し、MITEIが設立したフォーラムは、AIの持続可能な成長電力インフラの強化という二つの目標を追求します。MITEIのディレクターは「AIと送電網のバリューチェーン全体から利害関係者を集め、非商業的かつ協力的な環境で解決策を議論する場を提供する」と述べ、産学連携の重要性を強調しています。

フォーラムの研究対象は多岐にわたります。具体的には、低炭素・ゼロカーボンのエネルギー供給、送電網の負荷運用と管理、電力市場の設計や規制政策などが含まれます。さらに、省電力プロセッサや効率的なアルゴリズム、データセンターの冷却技術といった、エネルギー効率を高めるための技術開発も重要なテーマです。

MITEIはこれまでも、AIを活用した配電の最適化やデータセンターの立地に関する経済性分析など、関連プロジェクトを多数支援してきました。新設されたフォーラムは、これらの既存研究の知見を統合し、より包括的で実用的な解決策を生み出すためのハブとしての役割を担うことが期待されています。

AI技術の発展は、ビジネスの生産性や競争力を飛躍的に高める可能性を秘めています。しかし、その裏側にあるエネルギー問題から目を背けることはできません。今回のMITの取り組みは、技術革新と持続可能性の両立を目指す上で、重要な一歩となるでしょう。

グーグル、AIの電力危機を宇宙で解決へ

宇宙データセンター構想

AIの電力需要急増への対応
太陽光発電を利用する衛星群
Google製AIチップTPUを搭載
衛星間は光通信で高速接続

残された技術的課題

宇宙空間での熱管理
システムの長期信頼性の確保
過酷な放射線環境への対策

Googleは11月5日、AIの爆発的な電力需要に対応するため、宇宙空間にデータセンターを設置する壮大な構想「Project Suncatcher」を発表しました。これは太陽光で稼働する衛星群にAIチップを搭載し、地球の資源制約から脱却する試みです。実現には多くの技術的課題が残りますが、AIの持続可能な未来を拓く一手となるでしょうか。

なぜ宇宙なのでしょうか。背景には、AIの凄まじい電力消費があります。一説では2028年までにAIだけで米国全家庭の電力消費の22%に相当する量に達すると予測されています。また、データセンターの冷却には大量の水が必要となり、地球環境への負荷が大きな懸念となっています。

「Project Suncatcher」は、低軌道に多数の小型衛星を打ち上げ、それぞれにGoogle独自のAIアクセラレータ「TPU(Tensor Processing Unit)」を搭載します。動力は太陽光発電で全て賄い、衛星間の通信には高速な自由空間光通信を利用。これにより、宇宙に一つの巨大な計算基盤を構築する計画です。

もっとも、これは「ムーンショット(壮大な挑戦)」であり、課題も山積しています。スンダー・ピチャイCEOも認めるように、宇宙空間の過酷な放射線、真空での熱管理、そして軌道上でのシステムの長期的な信頼性確保が大きなハードルです。初期テストではTPUの放射線耐性が確認されたとしています。

Googleはこのプロジェクトを通じて、AIの計算能力を地球の制約から解放し、需要の伸びに際限なく応えられるソリューションを模索しています。この野心的な試みがAIインフラの新たなフロンティアを切り拓くか、その動向が注目されます。

マイクロソフトAI投資加速、電力不足が新たなボトルネックに

世界中でAIインフラ巨額契約

豪州企業と97億ドルの契約
クラウド企業Lambdaとも大型契約
UAEに152億ドル投資
最新NVIDIAGPUを大量確保

GPU余剰と電力不足の矛盾

チップ在庫はあっても電力が不足
データセンター建設が需要に追いつかない
CEO自らが課題を認める発言
エネルギー確保が最重要課題に浮上

マイクロソフトが、AIの計算能力を確保するため世界中で巨額のインフラ投資を加速させています。しかしその裏で、確保した大量のGPUを稼働させるための電力不足とデータセンター建設の遅れという深刻な問題に直面しています。同社のサティア・ナデラCEO自らがこの課題を認めており、AIのスケールアップにおける新たなボトルネックが浮き彫りになりました。

同社は、オーストラリアデータセンター企業IRENと97億ドル、AIクラウドを手がけるLambdaとは数十億ドル規模の契約を締結。さらにアラブ首長国連邦(UAE)には今後4年で152億ドルを投じるなど、最新のNVIDIAGPUを含む計算資源の確保をグローバルで推進しています。これは、急増するAIサービスの需要に対応するための動きです。

しかし、ナデラCEOは「現在の最大の問題は計算能力の供給過剰ではなく、電力データセンターの建設速度だ」と語ります。OpenAIサム・アルトマンCEOも同席した場で、ナデラ氏は「チップの在庫はあるが、接続できる場所がないのが実情だ」と述べ、チップ供給から物理インフラへと課題が移行したことを明確に示しました。

この問題の背景には、これまで横ばいだった電力需要データセンターの急増によって予測を上回るペースで伸びていることがあります。電力会社の供給計画が追いつかず、AI競争の足かせとなり始めています。AIの知能単価が劇的に下がるほど、その利用は爆発的に増え、さらなるインフラ需要を生む「ジェボンズのパラドックス」が現実味を帯びています。

アルトマン氏は核融合や太陽光発電といった次世代エネルギー投資していますが、これらの技術がすぐに大規模展開できるわけではありません。AIの進化を支えるためには、計算資源だけでなく、それを動かすための安定的かつ大規模な電力供給網の構築が、テクノロジー業界全体の喫緊の課題となっているのです。

AIの電力消費急増、電気料金値上げの懸念現実に

高まる電気料金への懸念

米消費者の8割が料金を懸念
AI・データセンターが主因と認識

急増するデータセンター需要

米国電力需要は10年以上横ばい
直近5年で商業・産業用が急増
2028年に最大12%を消費と予測

追いつかない電力供給網

再エネ拡大も政策リスクが影
天然ガスは輸出優先で国内不足
発電所建設の長期化がボトルネック

米国でAIとデータセンター電力消費が急増し、消費者の間で電気料金の値上げに対する懸念が広がっています。太陽光発電事業者Sunrunが実施した最新の調査によると、消費者の80%データセンター電力消費が自身の光熱費に与える影響を心配していることが判明。近年の電力需要の急激な伸びが、この懸念を裏付けています。

消費者の懸念は杞憂ではありません。米国電力需要は10年以上安定していましたが、データセンターを含む商業利用の急増で状況は一変しました。データセンター電力消費は2018年から倍増し、現在では米国の総発電量の約4%を占めます。ローレンス・バークレー国立研究所は、2028年までにこの割合が最大12%に達すると予測しており、電力網への負荷は増す一方です。

これまで旺盛な電力需要は、太陽光など再生可能エネルギーの拡大で賄われてきました。しかし、再エネ導入を促す政策には先行き不透明感があります。一方、もう一つの主要電源である天然ガスも、増産分が輸出に優先され、発電所の新設も時間がかかるため、供給が需要に追いつかない懸念が高まっています。

AI技術は、一部で雇用削減の手段と見なされるなど、社会的な懸念も存在します。こうした状況で、生活に直結する電気料金の値上げという問題が加われば、AI開発やデータセンター建設に対する社会的な反発が一層強まる可能性も指摘されています。

Google、AIの電力需要急増で原発を再稼働へ

AIと電力問題

AI・クラウド電力需要が急増
安定的なクリーン電力確保が課題に

Googleの解決策

電力大手NextEra Energyと協業
アイオワ州の休止原発を2029年に再稼働
Googleが再稼働投資電力コストを負担

再稼働のインパクト

600MW超のクリーン電力を供給
アイオワ州に数千人の雇用創出
AI成長とエネルギー確保の両立モデル

Googleは2025年10月27日、電力大手NextEra Energyとの協業を発表しました。アイオワ州唯一の原子力発電所を再稼働させ、急増するAIインフラ電力需要を賄います。クリーンで安定した電力確保が目的です。

生成AIの普及はデータセンター電力消費を急増させています。Google天候に左右されず24時間稼働できる原子力に着目。AI成長を支える迅速かつ大規模なクリーン電力確保策として、休止中の原発再稼働を決断しました。

発電所は2029年初頭に再稼働し、600MW超の電力を供給する計画です。契約に基づき、Googleは再稼働への投資を可能にし、発電コストを負担します。これにより、一度稼働していたプラントを迅速に活用できます。

このプロジェクトは電力確保にとどまりません。発電所の再稼働はアイオワ州に数千人規模の雇用大きな経済効果をもたらすと期待されています。ハイテク産業の成長が地域経済の活性化に直接貢献する好例となるでしょう。

Googleは他にも需要の柔軟化や次世代送電技術の導入など、多角的なエネルギー戦略を進めています。信頼性が高く拡張可能なエネルギーを迅速に確保し、持続可能なAIの発展を目指す姿勢を明確にしました。

OpenAI、日本のAI成長へ経済ブループリント公表

AI成長を支える3つの柱

あらゆる層へのAIアクセス提供
戦略的なインフラ投資の加速
大規模な再教育プログラムの実施

期待される経済効果と課題

経済価値100兆円超の創出
GDPを最大16%押し上げる可能性
デジタルと環境(GX)の両立

AI開発をリードするOpenAIは10月22日、日本がAIの潜在能力を最大限に引き出すための政策フレームワーク『日本経済ブループリント』を公表しました。この提言は、日本のイノベーションを加速させ、国際競争力を強化し、持続可能で包括的な経済成長を達成することを目的としています。官民学の連携を促し、AIが全世代に利益をもたらす社会の実現を目指します。

ブループリントは、AIによる広範な成長を実現するための3つの柱を掲げています。第一に、中小企業から公的機関まで誰もがAIの恩恵を受けられる『包摂的なアクセス』の確保。第二に、データセンター半導体製造といった『戦略的なインフラ投資』の加速。そして第三に、全世代を対象とした『教育と生涯学習』の推進です。

AIの導入は、日本経済に大きな変革をもたらす可能性があります。独立した分析によれば、AIは日本経済に100兆円を超える付加価値をもたらし、GDPを最大で16%押し上げる潜在力を持つと推定されています。日本がこの歴史的な好機をいかに大胆に掴み、世界のAIリーダーとしての地位を確立できるかが問われています。

変革はすでに始まっています。製造業では検査コストの削減、医療・介護現場では事務作業の軽減が実現しつつあります。また、教育分野ではAIチューターが個別学習を支援し、さいたま市や福岡市などの自治体では行政サービスの向上にAIが活用されています。これらは単なる効率化に留まらず、日本の創造性を増幅させる未来を示唆しています。

この成長を実現するには、デジタルと物理的なインフラへの持続的な投資が不可欠です。日本データセンター市場は2028年までに5兆円を超えると予測され、エネルギー需要も比例して増加します。そのため、デジタル変革(DX)と環境変革(GX)を両立させ、計算資源とグリーンエネルギー供給を一体で成長させる長期的戦略が求められます。

OpenAIは、日本のイノベーションと倫理を両立させるアプローチが、責任あるAI活用世界的なモデルになり得ると考えています。このブループリントは、日本のAIエコシステムの成長と共に進化する『生きた文書』です。官民が一体となり、AIがもたらす恩恵を社会全体で分かち合う未来の実現が期待されます。

AIデータセンター、フラッキングガスで稼働の現実

AIの巨大な電力需要

西テキサスに巨大データセンター建設
フーバーダム級の電力ガスで発電
OpenAIもガス火力発電所を併設

環境と地域社会への影響

ブルドーザーによる自然環境の破壊
干ばつ地域での水消費への懸念
騒音や光害など住民生活への影響

推進される化石燃料利用

中国との競争を背景に開発を正当化
米政府も許認可を迅速化し後押し

AIの爆発的な成長を支える巨大データセンターが、環境負荷の高いフラッキングガス(水圧破砕法による天然ガス)で稼働している実態が明らかになりました。PoolsideやOpenAIなどのAI企業が、米テキサス州などで化石燃料を直接利用する発電所を併設した施設を次々と建設。その背景には、中国との技術覇権争いがあります。

AIコーディング支援のPoolsideは、西テキサスにニューヨークのセントラルパークの3分の2に及ぶ広大なデータセンターを建設中です。ここではフーバーダムに匹敵する2ギガワット電力を、近隣のパーミアン盆地で採掘された天然ガスを燃やして賄います。OpenAIの巨大プロジェクト「スターゲイト」も同様の戦略をとっています。

こうした開発は、地域社会に深刻な影響を及ぼしています。建設のために広大な自然がブルドーザーで破壊され、干ばつの続く地域では貴重な水資源の消費が懸念されています。建設に伴う騒音や夜間の照明は、静かな生活を求めてきた住民の暮らしを一変させているのです。

なぜ化石燃料への依存が進むのでしょうか。OpenAI幹部は、中国エネルギーインフラ増強に対抗し、国家の再工業化を進める必要性を主張します。米政府も2025年7月の大統領令で、ガス火力AIデータセンターの許認可を迅速化し、再生可能エネルギーを除外する形でプロジェクトを後押ししています。

一方で、こうした大規模なガス発電所の新設は必ずしも必要ないとの指摘もあります。デューク大学の研究によれば、電力会社は年間を通じて利用可能な容量の約半分しか使っていません。データセンターがピーク時の電力消費を少し抑えるだけで、既存の電力網で需要を吸収できる可能性があるのです。

将来的には小型モジュール炉や太陽光、核融合への期待も高まっていますが、実用化には数十年を要する可能性があります。それまでの間、AIの発展は化石燃料への依存と環境負荷という不都合な真実を抱え続けることになります。そのコストを誰が負担するのか、という重い問いが突きつけられています。

GoogleのAI、核融合炉を制御 CFSと提携

AIで核融合開発を加速

AIでプラズマを最適制御
高速シミュレーターを活用
クリーンエネルギー実用化へ

次世代核融合炉「SPARC」

CFSが開発中の実験炉
史上初の純エネルギー生成目標
高温超電導磁石が鍵

AIの具体的な役割

数百万回の仮想実験を実施
エネルギー効率の最大化
複雑なリアルタイム制御の実現

Google傘下のAI企業DeepMindは2025年10月16日、核融合スタートアップのCommonwealth Fusion Systems(CFS)との研究提携を発表しました。DeepMindのAI技術と高速シミュレーター「TORAX」を用いて、CFSが建設中の次世代核融合炉「SPARC」の運転を最適化します。クリーンで無限のエネルギー源とされる核融合の実用化を、AIの力で加速させることが狙いです。

提携の核心は、AIによるプラズマ制御の高度化にあります。核融合炉では1億度を超えるプラズマを強力な磁場で閉じ込める必要がありますが、その挙動は極めて複雑で予測困難です。DeepMindは過去に強化学習を用いてプラズマ形状の安定化に成功しており、その知見をCFSの先進的なハードウェアに応用し、より高度な制御を目指します。

具体的な協力分野の一つが、高速シミュレーター「TORAX」の活用です。これにより、CFSは実験炉「SPARC」が実際に稼働する前に、数百万通りもの仮想実験を実施できます。最適な運転計画を事前に探ることで、貴重な実験時間とリソースを節約し、開発全体のスピードアップを図ることが可能になります。

さらにAIは、エネルギー生成を最大化するための「最適解」を膨大な選択肢から見つけ出します。磁場コイルの電流や燃料噴射など、無数の変数を調整する複雑な作業は人手では限界があります。将来的には、AIが複数の制約を考慮しながらリアルタイムで炉を自律制御する「AIパイロット」の開発も視野に入れています。

提携先のCFSは、マサチューセッツ工科大学発の有力スタートアップです。現在建設中の「SPARC」は、高温超電導磁石を用いて小型化と高効率化を実現し、投入した以上のエネルギーを生み出す「ネット・エネルギーを史上初めて達成することが期待される、世界で最も注目されるプロジェクトの一つです。

GoogleはCFSへの出資に加え、将来の電力購入契約も締結済みです。AIの普及で電力需要が急増する中、クリーンで安定したエネルギー源の確保は巨大テック企業にとって喫緊の経営課題となっています。今回の提携は、その解決策として核融合に賭けるGoogleの強い意志の表れと言えるでしょう。

エネルギー業界のAI革命、ADIPEC 2025で加速

AIがもたらす変革

運用コスト10-25%削減
生産性3-8%向上
エネルギー効率5-8%改善
予知保全でダウンタイム削減

ADIPEC 2025の焦点

世界最大のエネルギーイベント
技術論文の2割がAI関連
特設「AIゾーン」で最新技術集結
電力需要増など課題も議論

2025年11月3日から6日にかけて、アラブ首長国連邦のアブダビで世界最大のエネルギーイベント「ADIPEC 2025」が開催されます。今年のテーマは「エネルギー、インテリジェンス、インパクト」。人工知能(AI)がエネルギー業界のコスト削減や効率化をどう加速させるか、またAI自身の電力需要急増という課題にどう向き合うか、世界中から20万人以上の専門家が集い、未来のエネルギー戦略を議論します。

AIはエネルギー業界の変革を強力に推進しています。AIと自動化技術の導入により、運用コストは10〜25%削減され、生産性は3〜8%向上。さらにエネルギー効率も5〜8%改善されるなど、具体的な成果が報告されています。予知保全による設備の安定稼働や、リアルタイムのデータ分析に基づく最適化は、もはや試験段階ではなく、現場全体で導入が進むフェーズに入っています。

一方で、AIは「両刃の剣」でもあります。AIモデルの学習や推論には膨大な計算能力が必要で、データセンター電力需要を記録的な水準に押し上げています。この電力需要の急増は、送電網の安定性やデータセンターの立地選定など、新たな課題を生み出しました。AIによる効率化と、AIを支える電力確保のバランスが、業界全体の重要テーマとなっています。

ADIPEC 2025では、こうしたAIの光と影の両側面が主要議題となります。MicrosoftやHoneywellなどの巨大テック企業から革新的なスタートアップまでが集う特設「AIゾーン」では、最新のソリューションが披露されます。また、技術カンファレンスに提出された論文の約2割がAI関連であり、実践的な応用事例や課題解決策について活発な議論が期待されます。

エネルギー業界のリーダーにとって、ADIPEC 2025はAIの可能性と課題を体系的に理解し、自社の戦略に落とし込む絶好の機会となるでしょう。政策、資本、技術の各視点から未来のエネルギー像を議論するこの場で、対話が具体的な行動へと変わり、ビジョンが現実のインパクトを生み出すことが期待されています。

生成AIの電力消費、2030年に23倍増予測

急増するAIの電力消費

簡単なAIへの質問にも電力
ChatGPTは年間米2.9万世帯分を消費
生成AI全体では更に巨大化

2030年の驚異的な未来

総消費電力23倍超に急増
全人類が1日38クエリを利用
超巨大データセンターが数十棟必要

需要を牽引するAIの進化

主因は学習より推論(利用)
自律型AIエージェントの普及

生成AIの急速な普及に伴い、その膨大なエネルギー消費が新たな課題として浮上しています。ChatGPTのようなサービスは既に米国数万世帯分に相当する電力を消費しており、2030年までには生成AI全体の電力需要が現在の23倍以上に達するとの予測も出ています。この需要増に対応するため、OpenAIなどが参画するプロジェクトでは、前例のない規模のデータセンター建設が計画されています。AIの進化がもたらすエネルギー問題の現状と未来を解説します。

OpenAIChatGPTは、1日あたり25億件以上のクエリを処理しています。1クエリあたり0.34ワット時(Wh)と仮定すると、1日で850メガワット時(MWh)を消費する計算です。これは年間で米国の家庭約29,000世帯分の電力に匹敵する規模であり、簡単な対話の裏に隠された膨大なエネルギーコストを示唆しています。

ChatGPTは生成AI市場のほんの一角に過ぎません。Schneider Electric社の調査レポートによれば、2025年時点で生成AI全体が消費する電力は15テラワット時(TWh)に達すると推定されています。これはGoogleGeminiAnthropicClaudeなど、競合サービスの成長も織り込んだ数値であり、AI産業全体のインフラ負荷の大きさを示しています。

課題は将来の爆発的な需要増です。同レポートは、2030年までに生成AIの総電力消費量が347TWhに達すると予測しています。これは2025年比で23倍以上という驚異的な伸びです。背景には、人間だけでなくAIエージェント同士が自律的に対話し、1日あたり3,290億件ものクエリを生成する未来が想定されています。

このエネルギー需要を満たすため、IT大手はインフラの超巨大化を急いでいます。OpenAIなどが参画する「スターゲイト・プロジェクト」では、従来のデータセンターの常識を覆す1ギガワット級の施設の建設が計画されています。2030年までの需要増を賄うには、このような超巨大データセンターが数十棟必要になると試算されています。

AIの電力消費の構造も変化します。これまではモデルを開発する「学習」段階の負荷が注目されてきましたが、今後はユーザーとの対話など「推論(利用)」段階での消費が需要増の主要な牽引役となります。AIが社会に浸透すればするほど、日常的な利用に伴うエネルギー消費が加速度的に増大していくのです。

生成AIの活用は生産性向上の鍵ですが、その裏には無視できないエネルギーコストとインフラへの負荷が存在します。AIの市場価値を追求する上で、エネルギー効率の高いモデルの選択や開発、そして持続可能なインフラ戦略が、企業の競争力を左右する重要な要素となるでしょう。

AIの電力危機、MITが示す技術的解決策

急増するAIの環境負荷

日本の総消費電力を上回る規模
需要増の60%を化石燃料に依存

ハード・ソフト両面の対策

GPU出力を抑える省エネ運用
アルゴリズム改善で計算量を削減
再生可能エネルギー利用の最適化

AIで気候変動を解決

AIによる再エネ導入の加速
プロジェクトの気候影響スコア化

マサチューセッツ工科大学(MIT)の研究者らが、急速に拡大する生成AIの環境負荷に対する具体的な解決策を提示しています。国際エネルギー機関(IEA)によると、データセンター電力需要は2030年までに倍増し、日本の総消費電力を上回る見込みです。この課題に対し、研究者らはハードウェアの効率運用、アルゴリズムの改善、AI自身を活用した気候変動対策など、多角的なアプローチを提唱しています。

AIの電力消費は、もはや看過できないレベルに達しつつあります。ゴールドマン・サックスの分析によれば、データセンター電力需要増の約60%が化石燃料で賄われ、世界の炭素排出量を約2.2億トン増加させると予測されています。これは、運用時の電力だけでなく、データセンター建設時に排出される「体現炭素」も考慮に入れる必要がある、と専門家は警鐘を鳴らします。

対策の第一歩は、ハードウェアの運用効率化です。MITの研究では、データセンターGPU画像処理半導体)の出力を通常の3割程度に抑えても、AIモデルの性能への影響は最小限であることが示されました。これにより消費電力を大幅に削減できます。また、モデルの学習精度が一定水準に達した時点で処理を停止するなど、運用の工夫が排出量削減に直結します。

ハードウェア以上に大きな効果が期待されるのが、アルゴリズムの改善です。MITのニール・トンプソン氏は、アルゴリズムの効率改善により、同じタスクをより少ない計算量で実行できる「Negaflop(ネガフロップ)」という概念を提唱。モデル構造の最適化により、計算効率は8~9ヶ月で倍増しており、これが最も重要な環境負荷削減策だと指摘しています。

エネルギー利用の最適化も鍵となります。太陽光や風力など、再生可能エネルギーの供給量が多い時間帯に計算処理を分散させることで、データセンターのカーボンフットプリントを削減できます。また、AIワークロードを柔軟に調整する「スマートデータセンター」構想や、余剰電力を蓄える長時間エネルギー貯蔵ユニットの活用も有効な戦略です。

興味深いことに、AI自身がこの問題の解決策となり得ます。例えば、AIを用いて再生可能エネルギー発電所の送電網への接続プロセスを高速化したり、太陽光・風力発電量を高精度に予測したりすることが可能です。AIは複雑なシステムの最適化を得意としており、クリーンエネルギー技術の開発・導入を加速させる強力なツールとなるでしょう。

生成AIの持続可能な発展のためには、こうした技術的対策に加え、企業、規制当局、研究機関が連携し、包括的に取り組むことが不可欠です。MITの研究者らは、AIプロジェクトの気候への影響を総合的に評価するフレームワークも開発しており、産官学の協力を通じて、技術革新と環境保全の両立を目指す必要があると結論付けています。

AI電力需要予測は過大か、不要な化石燃料投資リスクを指摘

米国のNPOなどが今月発表した報告書で、AIの急成長に伴う電力需要の予測が過大である可能性が指摘されました。この予測に基づき電力会社が不要なガス発電所を建設すれば、消費者の負担増や環境汚染につながるリスクがあると警告。テック企業や電力会社に対し、透明性の高い需要予測と再生可能エネルギーへの移行を求めています。 生成AIの登場以降、エネルギー効率の向上で十数年横ばいだった米国電力需要は増加に転じました。AI向けのデータセンターは、従来のサーバーラックが家庭3軒分程度の電力を使うのに対し、80〜100軒分に相当する電力を消費します。これはまさに「小さな町」ほどの電力規模に相当します。 なぜ予測が実態以上に膨らむのでしょうか。報告書は、データセンター開発業者の投機的な動きを指摘します。彼らは資金や顧客が未確保のまま、複数の電力会社に重複して電力供給を申請するケースがあり、これが需要予測を水増ししている一因と見られています。 実際、全米の電力会社はハイテク業界の予測より50%も高い需要増を計画しています。ある大手電力会社のCEOは、電力網への接続申請は、実際に具体化するプロジェクトの「3〜5倍」に達する可能性があると認め、予測の不確実性を指摘しています。 不確実な需要予測にもかかわらず、電力会社はガス火力発電所の新設を進めています。これは電力会社の収益構造上、インフラ投資が利益に直結しやすいためです。結果として、不要な設備投資のコストが消費者の電気料金に転嫁されたり、化石燃料への依存が高まったりする恐れがあります。 こうしたリスクを避けるため、報告書は解決策も提示しています。電力会社には、開発業者への審査強化や契約条件の厳格化を提言。テック企業には、技術の省エネ化をさらに進め、再生可能エネルギーへの投資を加速させるよう強く求めています。AIの持続的な発展には、エネルギー問題への慎重な対応が不可欠です。

AIの電力問題、データセンター宇宙移設で打開策を模索

OpenAIサム・アルトマンCEOらが、AIの普及で急増するデータセンター電力消費問題に対応するため、施設を宇宙空間に移設する構想を提唱しています。この構想は、宇宙で太陽光を24時間利用してエネルギーを賄い、地上の電力網や水資源への負荷を軽減することが狙いです。スタートアップによる実験も始まっていますが、コストや技術、規制面での課題も多く、実現には時間がかかるとみられています。 AIデータセンター電力需要は、2030年までに最大165%増加すると予測されています。現在、こうした施設のエネルギーの半分以上は化石燃料に依存しており、気候変動対策の進展を脅かす存在となっています。この深刻な状況が、新たな解決策を模索する大きな動機となっているのです。 この宇宙移設構想を支持しているのは、アルトマン氏だけではありません。Amazon創業者のジェフ・ベゾス氏や元Google CEOのエリック・シュミット氏もこのアイデアに投資しています。アルトマン氏は、太陽の周りにデータセンター群を構築し、そのエネルギーを最大限に活用するという壮大なビジョンも語っています。 データセンターを宇宙へ移設する最大の利点は、エネルギー問題の解決です。24時間365日、遮られることなく太陽光エネルギーを利用できます。さらに、地上での課題である水資源の大量消費や、騒音・大気汚染といった地域社会への負担を根本から解消できる可能性を秘めているのです。 技術的な実現可能性も見え始めています。カリフォルニア工科大学の研究チームは、低コストで発電可能な軽量の宇宙太陽光発電システムを提案しました。しかし、宇宙空間ではデータ処理速度が地上より遅くなる可能性や、宇宙放射線による機器への影響、故障時の修理やアップグレードが極めて困難であるといった技術的課題が山積しています。 すでに複数のスタートアップが、この構想の実現に向けて動き出しています。小型のデータセンターを搭載した衛星の打ち上げ計画や、月面にデータを保管する試みも行われました。しかし、これらはまだ実験段階であり、ハーバード大学の経済学者は、産業規模で地上の施設と競争できるようになるかは予測が難しいと指摘しています。 現時点では、データセンターを宇宙に設置するコストは、地上に建設するよりもはるかに高額です。そのため、利益を追求する企業は地上での拡張を優先するでしょう。しかし、地上でのデータセンター建設に対する規制が世界的に強化される中、規制がほとんど存在しない宇宙空間が、将来的に企業にとって魅力的な選択肢となる可能性は否定できません。